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Non-parametric testing

z-tests and t-tests are used to test the mean of a sample against
either a �xed number or the mean of another sample.

Non-parametric tests, on the other hand, aim to test if certain
abstract properties hold for a sample instead of testing a numerical
value.

We are going to discuss three non-parametric tests:

test for goodness of �t: tests whether the distribution of a
sample comes from a theoretical background distribution;

test for homogeneity: tests whether two separate samples
come have the same distribution;

test for independence: tests whether two observed attributes
on a given sample are independent or not.

The three tests are known collectively as Pearson's χ2-tests
(because they all use the χ2 distribution).
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Test for goodness of �t

Assume we have a sample of size n where each element falls in one
of r categories. We want to test on a signi�cance level of 1− ε
whether

H0: the distribution of the sample follows a theoretical
distribution p1, . . . , pr on the categories, or

H1: the distribution of the sample is di�erent from p1, . . . , pr .

Denote the number of sample elements in each category by
νi , i = 1, . . . , r . The statistic is

χ2 =
r∑

i=1

(νi − npi )
2

npi
.

The percentile χ2ε is the 1− ε quantile of the χ2-distribution with
degree of freedom r − 1.

If χ2 < χ2ε, we accept H0. Otherwise, H0 is rejected.
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Example

A random generator is supposed to give random bits: 0 and 1, each
with 50% random probability. We take 1000 samples, which result
in 471 0's and 529 1's. Test on a 95% signi�cance level that the
probability of 0 is 50% against the hypothesis that the probability
of 0 is not 50%.

We test goodness of �t. There are r = 2 categories: 0 and 1. The
theoretical background distribution according to H0 is

p1 = 0.5, p2 = 0.5,

and the sample is

ν1 = 529, ν2 = 471

with sample size n = 1000.
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Example

The statistic is

χ2 =
r∑

i=1

(νi − npi )
2

npi

=
(471− 1000 · 0.5)2

1000 · 0.5
+

529− 1000 · 0.5)2

1000 · 0.5
= 3.364.

The percentile is the 95% quantile of the χ2 distribution with
degree of freedom r − 1 = 1:

χ2ε = 3.84

from the table for the χ2 distribution.

χ2 = 3.364 < 3.84 = χ2ε

holds, so we accept H0 on a 95% signi�cance level.
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Example

Now if the sample was 451 0's and 549 1's instead, then the
statistic is

χ2 =
r∑

i=1

(νi − npi )
2

npi

=
(451− 1000 · 0.5)2

1000 · 0.5
+

(549− 1000 · 0.5)2

1000 · 0.5
= 10.404,

and
χ2 = 10.404 > 3.84 = χ2ε,

so we reject H0 on a 95% signi�cance level and conclude that the
random bit generator does not give 0 with 50% probability.
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Goodness of �t for continuous background distributions

The test for goodness of �t can be applied also when the
background distribution is continuous. In this case, the continuous
domain should be cut up into �nitely many intervals before testing.

As a rule of thumb, each interval should contain at least 5 sample
elements. Otherwise, there is some freedom in the exact choice of
intervals.

Once the intervals are �xed, they correspond to categories. The
sample is grouped according to the intervals, and the pi theoretical
probabilities are equal to the probability of each interval according
to the theoretical background distribution.
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Test for homogeneity

We have two samples of size n and m respectively. Each element
falls into one of r categories. We want to test on a signi�cance
level of 1− ε whether

H0: the distribution of the two samples is the same, or

H1: the distribution of the two samples is not the same.

Denote the number of sample elements in each category by
νi , i = 1, . . . , r for the �rst sample and µi , i = 1, . . . , r for the
second sample. The statistic is

χ2 =
r∑

i=1

nm
(νi/n − µi/n)2

νi + µi
.

The percentile χ2ε is the 1− ε quantile of the χ2-distribution with
degree of freedom r − 1.

If χ2 < χ2ε, we accept H0. Otherwise, H0 is rejected.

Stochastics Illés Horváth Statistics III: Nonparametric tests



Test for homogeneity

We have two samples of size n and m respectively. Each element
falls into one of r categories. We want to test on a signi�cance
level of 1− ε whether

H0: the distribution of the two samples is the same, or

H1: the distribution of the two samples is not the same.

Denote the number of sample elements in each category by
νi , i = 1, . . . , r for the �rst sample and µi , i = 1, . . . , r for the
second sample. The statistic is

χ2 =
r∑

i=1

nm
(νi/n − µi/n)2

νi + µi
.

The percentile χ2ε is the 1− ε quantile of the χ2-distribution with
degree of freedom r − 1.

If χ2 < χ2ε, we accept H0. Otherwise, H0 is rejected.

Stochastics Illés Horváth Statistics III: Nonparametric tests



Test for homogeneity

We have two samples of size n and m respectively. Each element
falls into one of r categories. We want to test on a signi�cance
level of 1− ε whether

H0: the distribution of the two samples is the same, or

H1: the distribution of the two samples is not the same.

Denote the number of sample elements in each category by
νi , i = 1, . . . , r for the �rst sample and µi , i = 1, . . . , r for the
second sample. The statistic is

χ2 =
r∑

i=1

nm
(νi/n − µi/n)2

νi + µi
.

The percentile χ2ε is the 1− ε quantile of the χ2-distribution with
degree of freedom r − 1.

If χ2 < χ2ε, we accept H0. Otherwise, H0 is rejected.

Stochastics Illés Horváth Statistics III: Nonparametric tests



Test for homogeneity

We have two samples of size n and m respectively. Each element
falls into one of r categories. We want to test on a signi�cance
level of 1− ε whether

H0: the distribution of the two samples is the same, or

H1: the distribution of the two samples is not the same.

Denote the number of sample elements in each category by
νi , i = 1, . . . , r for the �rst sample and µi , i = 1, . . . , r for the
second sample. The statistic is

χ2 =
r∑

i=1

nm
(νi/n − µi/n)2

νi + µi
.

The percentile χ2ε is the 1− ε quantile of the χ2-distribution with
degree of freedom r − 1.

If χ2 < χ2ε, we accept H0. Otherwise, H0 is rejected.

Stochastics Illés Horváth Statistics III: Nonparametric tests



Test for independence

We have a sample of size n where each element has two attributes,
the �rst property falling into one of r categories and the second
attribute falling into one of s categories. We want to test on a
signi�cance level of 1− ε whether

H0: the two attributes are independent, or

H0: the two attributes are not independent.

Let νi ,j denote the number of sample elements with the �rst
attribute falling into category i and the second attribute falling into
category j . Also,

νi ,. =
s∑

j=1

νi ,j and ν.,j =
r∑

i=1

νi ,j .
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Test for independence

The statistic is

χ2 =
r∑

i=1

s∑
j=1

n

(
νi ,j −

νi,.ν.,j
n

)2
νi ,.ν.,j

.

The percentile is the 1− ε quantile of the χ2-distribution with
degree of freedom (r − 1)(s − 1).
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Problem 8

A lake contains 3 species of �sh: carp, tilapia and cat�sh. Otto, the
old �sherman tells us that the lake contains twice as much tilapia as
either carp or cat�sh. Based on a sample of 60 �sh caught, decide
on a 95% con�dence level whether we should believe Otto or not.

carp tilapia cat�sh

11 35 14

Solution. We do a goodness of �t test. We have r = 3 categories,
and the theoretical background distribution according to Otto is

p1 = 0.25, p2 = 0.5, p3 = 0.25.

H0: the sample comes from this background distribution;

H1: the sample has a di�erent distribution.
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Problem 8

The sample size is n = 60 and the sample is

ν1 = 11, ν2 = 35, ν3 = 14.

The statistic is

χ2 =
r∑

i=1

(νi − npi )
2

npi
=

(11− 60 · 0.25)2

60 · 0.25
+

(35− 60 · 0.5)2

60 · 0.5
+

(14− 60 · 0.25)2

60 · 0.25
= 1.967.

The percentile is the 95% quantile of the chi2-distribution with
degree of freedom r − 1 = 2:

χ2ε = 5.99.

The comparison
χ2 = 1.967 < χ2ε = 5.99

holds, so we accept H0 on a 95% signi�cance level and conclude
that we can believe Otto.
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Problem 12

We are examining a certain type of crash helmets by color and level
of protection. We have a sample of 1232 accidents where this type
of helmet was involved.

black white orange

no injury 501 367 31

minor injury 173 107 7

major injury 30 15 1

Accept or reject the hypothesis that the color of the helmet is
independent from the level of protection provided on a 95%
con�dence level.
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Problem 12

This is a test for independence.

H0: the color and protection level are independent;

H1: the color and protection level are not independent.

We have r = 3 color attributes and s = 3 injury attributes. νi ,j are
the elements inside the table, and we also need

ν1,. = 501+ 367+ 31 = 905, ν.,1 = 501+ 173+ 30 = 704,
ν2,. = 173+ 107+ 7 = 287, ν.,2 = 367+ 107+ 15 = 489,
ν3,. = 30+ 15+ 1 = 46, ν.,3 = 31+ 7+ 1 = 39.

The sample size is n = 1232.
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Problem 12

The statistic is

χ2 =
r∑

i=1

s∑
j=1

n

(
νi ,j −

νi,.ν.,j
n

)2
νi ,.ν.,j

=

1232 ·

((
501− 905·704

1232

)2
905 · 704

+ · · ·+
(
1− 46·39

1232

)2
46 · 39

)
=

= 3.875.

The percentile is the 95% percentile of the χ2-distribution with
degree of freedom (r − 1)(s − 1) = (3− 1)(3− 1) = 4:

χ2ε = 9.49.

The comparison
χ2 = 3.875 < χ2ε = 9.49

holds, so we accept H0 on a 95% con�dence level and conclude
that the color and protection level are independent.
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that the color and protection level are independent.
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Markov Population Processes

Let's take N copies of a mini Markov chain. The mini Markov
chain has state space of size K and its generator is Q = (rij)

K
i ,j=1

.
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Markov Population Processes

If the mini Markov chains are independent, then we haven't done
much. We can make them dependent by letting the transition rates
rij depend on other mini Markov chains.

Let Xk(t) = XN
k (t) denote the number of mini Markov chains in

state k at time t, and

xN(t) =
XN(t)

N

are the ratio of the number of mini Markov chains in each state
relative to the entire population.
A typical type of dependence is the so-called density-dependent

Markov population process, where the rij rates can depend on the
vector x(t).

In this case, the mini Markov chains are no longer independent.
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SIR model

Example. SIR epidemic model. In a population, each individual is in
state S, I or R, where:

S: susceptible, that is, healthy, but may get infected;

I: infected;

R: recovered, can no longer get infected.

There are only two possible transitions:

S→I is infection;

I→R is recovery.
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SIR model

Infection rate is proportional to the ratio of infected individuals
within the entire population:

rS→I (x) = βxI ,

while recovery rate is constant:

rI→R(x) = γ,

where β és γ are constants for the given infection.

S I R

I
γβ x
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SIR, N = 100

How does a realization of xN(t) look like?

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

(Parameters: β = 5, γ = 1, N = 100, initial state is
x(0) = (0.9, 0.1, 0).)
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SIR, N = 1000

How does a realization of xN(t) look like?

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

(Parameters: β = 5, γ = 1, N = 1000, initial state is
x(0) = (0.9, 0.1, 0).)
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SIR, N = 10000

How does a realization of xN(t) look like?

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

(Parameters: β = 5, γ = 1, N = 10000, initial state is
x(0) = (0.9, 0.1, 0).)
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Mean-�eld limit

These look convergent to some smooth, deterministic curves. Is
this the case?

Yes! But �rst, preparations.
For the SIR model, the mean-�eld system is:

d

dt
vS(t) = −βvS(t)vI (t),

d

dt
vI (t) = βvS(t)vI (t)− γvI (t),

d

dt
vR(t) = γvI (t).
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SIR

How does a realization of xN(t) look like?

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

(Parameters: β = 5, γ = 1, initial state is v(0) = (0.9, 0.1, 0).)
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Kurtz' Theorem

Theorem (Kurtz)

Assume that

the rij rate functions are twice di�erentiable, and

xN(0)→ v(0) in probability as N →∞.

Then the solution of the mean-�eld system v(t) is unique, and for

any �nite T and ε > 0,

lim
N→∞

Pr

(
max

0≤t≤T
max

1≤k≤K
|vk(t)− xNk (t)| > ε

)
= 0,

or in a more compact form,

max
0≤t≤T

max
1≤k≤K

|vk(t)− xNk (t)| p→ 0,

as N →∞.

v(t) is the mean-�eld limit of the Markov population model.
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Kurtz' Theorem

Kurtz illustrated:

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

N = 100
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Kurtz' Theorem

Kurtz illustrated:

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

N = 10000
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Kurtz' Theorem

Remarks

Kurtz is a process convergence theorem. It can be regarded as a
generalization of the LLN for processes.

v(t) is the solution of a system of ordinary di�erential equations,
which are memoryless. This is due to the Markov property of the
population process.

The �uctuations of x(t) around v(t) are of order 1√
N

and converge

to normal distribution as N →∞ (so e�ectively the CLT also
holds).
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Kurtz' Theorem

Further remarks.

x(t) and v(t) denote the ratios of each class within the population.
So this mean-�eld limit is applicable when every state has a number
of individuals comparable to the entire population.

For the SIR model, this means that the mean-�eld convergence
holds in the region when the number of infected is comparable to
the entire population.

In the early parts of an epidemic, when there are very few infected
individuals, other models may be better (like branching processes).
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